The Well-Trained Mind Academy **Astronomy**

Course Blackboard site: http://wtma.blackboard.com

Required Texts:

- *The Kingfisher Science Encyclopedia*, 3rd ed. New York: Kingfisher, 2012 (ISBN 978-0753458860)
- Astronomy for the Logic Stage Student Guide, Well-Trained Mind Academy Ed. Niceville, FL: Elemental Science, 2016.

Recommended

- Lippincott, Kristin. *Astronomy DK Eyewitness Book*. New York: DK Children, 2008. (ISBN 978-0756637675)
- Dickinson, Terence. *Exploring the Night Sky*. Buffalo, NY: Firefly Books, 1987 or 1998. (ISBN 978-0920656662)

Course Description:

This class studies astronomy at a logic-stage level by making use of *Astronomy for the Logic Stage Student Guide* (Well-Trained Mind Press edition), and *The Kingfisher Science Encyclopedia* (KSE), as well as numerous instructor-assigned supplemental materials. Students will use various internet-based sources, time lines, summaries, and outlines to learn about astronomy, from the earliest stargazing to the newest scientific discoveries.

Written Assignments:

- Outlines (two per semester), 10%: 1-page two or three-level outlines of assigned reading.
 Instructor will assist with outline structure and will allow chances for revision (see Policies section of syllabus). Outlines must be typed and submitted as Word documents in Blackboard.
- Written summaries (three per semester), 12.5%: 1-2 page (300-500 word) summary of assigned Kingfisher Science Encyclopedia reading. Summaries must be typed and submitted as Word documents in Blackboard.
- Primary source checklist (two per semester), 12.5%: Completed evaluation of an internet source assigned in class. Internet sources are tentatively scheduled as being selections from:
 - O Nicolas Copernicus: From The Revolutions of the Heavenly Bodies, 1543 http://sourcebooks.fordham.edu/mod/1543copernicus2.asp
 - O On Nuclear Reactions Occurring in Very Hot Stars

 http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?bibcode=1954ApJS....1

 http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?bibcode=1954ApJS....1

 http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?bibcode=1954ApJS....1

 http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?bibcode=1954ApJS....1

 <a href="http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?bibcode=1954ApJS....1

 <a href="http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query.edu/cgi-bin/nph-iarticle_query.edu/cgi-bin/nph-iarticle_query.edu/cgi-bin/nph-iarticle_query.edu/cgi-bin/nph-iarticle_query.edu/cgi-bin/nph-iarticle_query.edu/cgi-bin/nph-iarticle_query.edu/cgi-bin/nph-iarticle_

Students will be asked to answer the following questions in 2-4 sentences each, in a Blackboard test:

- O What does this source say? (content)
- O Who is the author?
- o What is the writer's purpose?

- O What events led to this piece of writing?
- **o** What happened as a result of this writing?
- Science fair project, 20%: The student will complete a research project on a topic in Astronomy; the topic will be chosen by the student but must be approved by the instructor before research begins. The results will include a 2-4 page summary (500-1000 word), using at least two sources from outside class materials. Students are required to use illustrations, student-created hands-on projects, or other non-written materials to support the project. All material must be electronically recorded (photographed, videoed, etc) and the recording uploaded into Blackboard.

Assessments and Discussion Questions:

- Weekly Discussion Questions (DQs): Discussion questions will be drawn from lectures, supporting materials, the Astronomy for the Logic Stage, and the Kingfisher Science Encyclopedia. Each student must write a meaningful reply to the question by midnight, EST, Monday, and meaningfully respond to two other students' responses by midnight, EST, on Wednesday. See the Assignment policies for more information about meaningful participation. 5% of final grade, total.
- Weekly comprehension quizzes: Quizzes will consist of image identification and item significance identification. Student's resources may be used. 5% of final grade, total. Online through Blackboard.
- *Unit Exams, 15%:* Blackboard-based examination on material covered since the beginning of the course. Identifications, short answers, and brief essay questions.
- *Final Exam, 10%*: Blackboard-based examination on material covered since the midterm exam. Identifications, short answers, and brief essay questions.
- *Time Line, 10%:* The student will mark given important dates, weekly, on the sheets provided in the student guide. It must be scanned or photographed, and then uploaded into Blackboard two weeks before the final exam.

Course Work	Percentage	
Weekly Quizzes	5%	
Discussion Questions	5%	
Primary Source Checklists	12.5%	
Written Summaries	12.5%	
Outlines	10%	
Unit Exams	15%	
Final Exam	10%	
Timeline	10%	
Total	100%	

Policies and Procedures:

Assignments:

• Assignment Submission and Late Work Policy: Assignments are due by 12 am Eastern Standard Time (-5:00 UTC) on the date listed in the syllabus. Late work will receive a letter grade reduction for every day that it is late, up to five days. After five days, late work will not

- be accepted. Essay assignments are to be submitted via BlackBoard in either .pdf, .doc, .docx, or .rtf format.
- Formatting and Style: Formatting is to be 12-point Times New Roman, double-spaced, with 1" margins. Use a single space between sentences, always use the Oxford comma, avoid the use of passive voice, and do not use the first person or address the audience directly. Students are to refer to the APA Style Manual. If students wish to purchase a hard copy, use ISBN-13: 978-1433805615 or ISBN-10: 1433805618.
- Assignment Prior Review: Students may submit an outline for feedback one week in advance
 of the deadline. Papers will be returned with written feedback at least 24 hours prior to the
 submission deadline. This option is not available for the final exam.
- Assignment Revision: Within one week after receiving graded papers, students may revise
 papers for an improved grade, not to exceed one letter grade above the original grade. This
 option is not available for the final exam.
- Meaningful Participation: A good rule of thumb is if you don't spend at least several minutes
 thinking about or developing your position and explaining it in a concise and clear manner,
 then it probably will not be meaningful. Criticizing without offering support is not considered
 worthwhile participation, and you will not receive credit. Examples of meaningful
 participation include:
 - o Sharing a related experience
 - O Commenting on others' experiences
 - O Asking others questions about their ideas and/or experiences
 - o Offering a different perspective about an idea that is being discussed
 - O Describing an interesting idea from the week's reading and explaining what you learned
 - O Asking the group a question about something in the course
 - o Disagreeing (respectfully)
 - O Describing a problem and asking for help
 - O Describing how you've used something you've learned in the course
 - o Sharing a relevant resource
 - O Describing relevant research and sharing information on how to find it
 - O Noting, briefly, the content and/or purpose of a useful website and providing a link (it is a violation of copyright law to copy the actual page)

Example Schedule:

Note: This schedule corresponds to the weekly chapter schedule in *Astronomy for the Logic Stage (ALS)*. The schedule is subject to updates. Please see Blackboard announcements for changes.

- *Monday*—Discussion Question Response
- Wednesday—Response to two other students due
- Friday—Weekly Quiz due; any Written Assignments (Unit Exams, Final Exam, Science Fair Project, etc.) due

Example Astronomy Schedule

Week	KSE	ALS Chapter	Assignment	Topic
0			Introduction	Orientation
1	386-387	1	Quiz, DQ	Universe
2	390-391	2	Quiz, DQ	Galaxies
3	392-393	3	Written Summary, DQ	Stars
4		4	Quiz, DQ	Constellations
5		5	Unit Exam, DQ	Constellations
6	394-395	6	Primary source, DQ	Sun
7	403-405	7	Outline, DQ	Inner Planets
8	400-402	8	Midterm Exam, DQ	Earth/Moon
			Spring Break	
9	406-407	9	Written Summary, DQ	Outer Planets
10	408-411	10	Primary source, DQ	Dwarf Planets
11	412-413	11	Unit Exam, DQ	Comets, Meteorites
12	414-415	12	Quiz, DQ	Astronomers
13	416-417	13	Written Summary, DQ	Looking Into Space
14	420-421	14	Outline, DQ, Timeline	Exploring Space
15	424-425	15	Unit Exam, DQ	Satellites
			Final Exam	No lecture
			Research Project	

The Well-Trained Mind Academy **Biology for the Logic Stage**

Course Blackboard site: wtma.blackboard.com

Required Texts

• Holt Science & Technology: Life Science Student Edition. ISBN 978-0030462245

Course Description

Biology for the Logic Stage is a course in the study of life and living things. This course will help us all to better appreciate the creatures around us, understand the marvels of the human body and the magnificent processes of life. Throughout the year, we will investigate why living things look and behave like they do. We will uncover the concepts of cells, DNA, classification and cycles in the biosphere, plants, invertebrates, vertebrates, migration and defenses in animals and the human body.

Many of the concepts we explore build on each other, making it essential for students to continually reflect on their understanding of the content. Students will be expected to demonstrate connections through narrative summaries and experimental design; to complete several independent and group projects; to develop and refine their observation and critical thinking skills and to practice working independently as well as in groups as they design experiments, conduct scientific investigations, develop skills in collecting and interpreting data, and write up reports.

In order to be successful, you must complete all assignments, be reflective of your understanding, collaborate and participate in class, and most importantly, ask for help if needed.

Assignments

Students will complete both individual lab reports and group lab reports, where two, three or four students will collaborate on a specific topic. Students will also complete narrative summaries associated with a specific topic. In addition, there will be two research-based projects to be carried out individually. Lab reports (individual and group) as well as narrative summaries are worth 40% of the final grade.

This is the breakdown for Assignments:

- 5 Independent Labs are each worth 4% for a total of 20%.
- 4 Group Labs are each worth 2.5% for a total of 10%.
- 5 Narrative Summaries are each worth 2% for a total of 10%.

Tests

There will be two tests assigned: one in the middle of the fall semester and one in the middle of the spring semester. The fall semester test will be a Blackboard based multiple choice test on material covered since the beginning of the course and the spring semester test will be a Blackboard based multiple choice test on material covered from the beginning of the spring semester. Each test is worth 10% of the final grade.

Mid-Year & Final Evaluations

The Mid-Year Evaluation will be a Blackboard based multiple choice examination on material covered from the beginning of the course through the end of the fall semester. The Final Evaluation will be a Blackboard based multiple choice examination on material covered from the beginning of the second semester through the end of the course. More detail will be provided on these assessments during the fall and spring semesters. Each evaluation is worth 10% of the final grade.

Famous Biologist Report

During the fall semester, students will be assigned a biologist and will conduct preliminary research, create an outline, write a rough draft, and then turn in a final report, with feedback from the instructor along the way. The report should be at least 200 words. This project is worth 10% of the overall grade.

Science Fair Project

During the spring semester, students will be given a choice of five topics and develop a science fair project that will require them to work through the scientific method from start to finish. This project is worth 10% of the overall grade.

Grading breakdown

Assignments (individual/group lab reports and narrative summaries): 40%

Test 1: 10% Test 2: 10%

Mid-Year Evaluation: 10% Final Evaluation: 10%

Famous Biologist Report: 10% Science Fair Project: 10%

Example schedule:

FALL SEMESTER	SPRING SEMESTER
TOPIC 1: Weeks 1 - 3	TOPIC 6: Weeks 18 - 20
Living Creatures	Vertebrates
Classification	Mammals
Scientific Names & Common Names	Birds
The Scientific Method	Reptiles
Group Lab: What kind of tree is it?	Amphibians
Narrative Summary: DKES pg. 310 - 311	Fish
	Group Lab: Which type of fur keeps
	mammals warmer?
	Narrative Summary: DKES pg. 326 - 335

ГОРІС 2: Weeks 4 - 6	TOPIC 7: Weeks 21 - 23
Cells	Migration
	Animal Defenses
Prokaryotic Cells Plant Cells	
	Feeding and Nutrition
Animal Cells	Life Cycles
DNA	Individual Lab: Design an animal that uses
Genetics	camouflage for defense.
Individual Lab: DNA Extraction	
FALL INDIVIDUAL PROJECT:	SPRING INDIVIDUAL PROJECT:
Famous Biologist Biography	Science Fair
TEST 1	TEST 2
ГОРІС 3: Weeks 7 - 9	TOPIC 8: Weeks 24 - 27
Cycles in the Biosphere	Human Body I
Nitrogen Cycle	Integumentary System
Oxygen Cycle	Skeletal System
Phosphorus Cycle	Muscular System
Carbon Cycle	Nervous System
Water Cycle	Endocrine System
Individual Project: Diorama	Group Lab: Does adrenalin affect my
Narrative Summary: DKES pg. 372	breathing and heart rate?
ГОРІС 4: Weeks 10 - 12	TOPIC 9: Weeks 28 - 31
Life of Plants	Human Body II
Parts of a Plant	l , , , , , , , , , , , , , , , , , , ,
	Circulatory System
Fungi	Respiratory System
Angiosperms	Digestive System
Gymnosperms	Urinary System
Photosynthesis	Immune System
Individual Lab: Can I grow mold?	Individual Lab: Do kidneys filter out liquids
	or solids?
	Narrative Summary: DKES pg. 345
TOPIC 5: Weeks 13 - 16	Weeks 32 - 33
Invertebrates	Science Fair Presentation
Annelids, Platyhelminthes & Nematodes	Review for Final Evaluation
Cnidarians and Echinoderms	
Mollusks	
Crustaceans	
Insects	
Group Lab: Do insects play a part in	
decomposition?	
Narrative Summary: DKES pg. 320 - 323	
MID YEAR EVALUATION: Week 17	FINAL EVALUATION: Week 34

The Well-Trained Mind Academy Chemistry for the Logic Stage

Course Blackboard site: www.wtma.blackboard.com

Materials

There is no required text for this class. We will be using readings and labs from the <u>American Chemical Society</u> and other sources. We will be using mostly HTML-based simulations. Occasionally Java simulations may be used. If you are unable to run Java, I will provide a work around.

Course Description

This course is designed to provide inquiry-based instruction tailored to logic-stage (middle school) students of chemistry. Specific topics of exploration include the periodic table of elements, properties of matter and solutions, chemical reactions, acid-base chemistry, biochemistry, and the chemistry of industry. Throughout each unit of study, we will implement and discuss key components of the scientific method.

Many of the concepts we explore build on each other, making it essential for students to continually reflect on their understanding of the content. Students will be expected to demonstrate connections through narrative summaries, complete independent and group assignments, collect and analyze data, and compose written scientific reports.

Grading:

Labs and	45%	Attendance and	5%
Assignments		Participation	
Chemist Biography	10%	Midterm and Final	10%
Science Fair Project	10%	Quizzes and Exams	20%

Assignments

Assignments will vary throughout the year. Each week different assignments will be given for you to complete. We will be doing labs, activity worksheets, solving problems and writing narrative summaries. All weekly assignments will be due on Sunday at midnight EST. Some assignments that are bigger (labs, projects) may take more time to grade. However, I will try to have all assignments returned within one week of the due date.

Famous Chemist Biography

During the fall semester, students will choose a chemist and will conduct preliminary research, create an outline, write a rough draft, and then turn in a final report, with feedback from the instructor along the way. Due dates will be specified when the assignment is given and place on the class calendar

Science Fair Project

During the spring semester, students will be given a choice of topics and develop a science fair project that will require them to work through the scientific method from start to finish. Students will present projects to their classmates.

Quizzes and Exams

Students will be assessed periodically on their comprehension of course material through quizzes and tests. These will always be announced at least one class period prior to the exam. Generally

speaking quizzes may be given more often than exams with 4-6 quizzes given per quarter and 2-3 exams.

Midterm & Final Exams

The Midterm Exam will be a Blackboard based test on material covered from the beginning of the course through the end of the fall semester. The Final Exam will be a Blackboard based test on material covered during the entire year. More detail will be provided on these assessments during the fall and spring semesters.

Google Docs and Group Work

Science is a collaborative process. As such, we will be utilizing Google Docs both inside and outside of class. Here your students can collaborate and work together in real time to create lab experiments, charts, tables, procedures, etc.

Example schedule:

Week	Lecture 1	Lecture 2	
Week 1	Scientific Method	Measurement	
Week 2	Metric System and Conversions	Metric System and Conversions	
Week 3	Matter	Matter and Energy	
Week 4	Temperature vs. Heat	Phase Change: Evaporation	
Week 5	Phase Change: Condensation	Phase Change: Condensation	
Week 6	Phase Changes: Freezing and Melting	Phase Changes: Freezing and Melting	
Week 7	Melting Phase Change	Heating and COoling Curves	
Week 8	Density	Density	
Week 9	Density	Density	
End of First Quarter			
Week 10	Gases	Gases	
Week 11	Gas Laws and KMT	Gas Laws and KMT	
Week 12	Atoms, Elements, Molecules and Compounds Atoms Elements, Molecules and Compounds		
Week 13	Classifying Matter Separation Techniques		
Week 14	Chemical and Physical Changes Building Molecules		
Week 15	Review Week		
Thanksgiving Break			
Week 16	Atomic Structure	Atomic Structure	
Week 17	Atomic Theory Build an Atom		
Week 18	Exam Week		
End of Second Q	uarter/Fall Semester		
Winter Break			

Week 19	The Periodic Table	The Periodic Table	
Week 20	The Periodic Table and Energy Levels	The Periodic Table and Energy Levels	
Week 21	Covalent Bonding	Covalent Bonding	
Week 22	Ionic Bonding	Ionic Bonding	
Week 23	Lewis Dot Diagrams	Lewis Dot Diagrams	
Week 24	Polar Molecules	Polar Molecules	
Week 25	Surface Tension	Surface Tension	
Week 26	Solubility	Solubility	
End of Third	Quarter		
Spring Break			
Week 27	Chemical Reactions	Chemical Reactions	
Week 28	Reaction Kinetics and Precipitates Reaction Kinetics and Precipitat		
Week 29	Energy Changes in Chemical Reactions Energy Changes in Chemical Reactions		
Week 30	pH and Color Change pH and Color Change		
Week 31	Neutralizing Acids and Bases Neutralizing Acids and Ba		
Week 32	Chemistry of Life	Chemistry of Life	
Week 33	Chemistry of Industry	Chemistry of Industry	
Week 34	Science Fair	Science Fair	
Week 35	Review and Exam Week		

The Well-Trained Mind Academy **Physics for the Logic Stage**

Course Blackboard site: wtma.blackboard.com

Required Texts

• Holt Science & Technology: Student Edition Physical Science. ISBN 978-0030462283

Please make sure you have taken the math pre-test before signing up for this course.

Course Description

Physics for the Logic Stage provides an exploration of the field of physics while teaching the basics of the scientific method. Throughout the year, we will address the concepts of forces and motion, friction and gravity, pressure and work, energy, thermodynamics, sound, light, simple machines, electricity and magnetism.

Many of the concepts we explore build on each other making it essential for students to continually reflect on their understanding of the content. Students will be expected to demonstrate connections through narrative summaries, mathematical problem solving, and experimental design; to complete several independent and group projects; to develop and refine their observation and critical thinking skills and to practice working independently as well as in groups as they design experiments, conduct scientific investigations, develop skills in collecting and interpreting data, and write up reports.

In order to be successful, you must complete all assignments, be reflective of your understanding, collaborate and participate in class, and most importantly, ask for help if needed.

Assignments

Students will complete both individual lab reports and group lab reports, where two, three or four students will collaborate on a specific topic. Students will also complete narrative summaries associated with a specific topic. In addition, there will be two research-based projects to be carried out individually. Lab reports (individual and group) as well as narrative summaries are worth 40% of the final grade.

- 5 Independent Labs are each worth 4% for a total of 20%.
- 4 Group Labs are each worth 2.5% for a total of 10%.
- 5 Narrative Summaries are each worth 2% for a total of 10%.

Tests

There will be two tests assigned: one in the middle of the fall semester and one in the middle of the spring semester. The fall semester test will be a Blackboard based multiple choice test on material covered since the beginning of the course and the spring semester test will be a Blackboard based multiple choice test on material covered from the beginning of the spring semester. Each test is worth 10% of the final grade.

Mid-Year & Final Evaluations

The Mid-Year Evaluation will be a Blackboard based multiple choice examination on material covered from the beginning of the course through the end of the fall semester. The Final Evaluation will be a Blackboard based multiple choice examination on material covered from the beginning of the second semester through the end of the course. More detail will be provided on these assessments during the fall and spring semesters. Each evaluation is worth 10% of the final grade.

Famous Physicist Report

During the fall semester, students will be assigned a physicist and will conduct preliminary research, create an outline, write a rough draft, and then turn in a final report, with feedback from the instructor along the way. The report should be at least 200 words. This project is worth 10% of the overall grade.

Science Fair Project

During the spring semester, students will be given a choice of five topics and develop a science fair project that will require them to work through the scientific method from start to finish. This project is worth 10% of the overall grade.

Grading breakdown

Assignments (individual/group lab reports and narrative summaries): 40%

Test 1: 10% Test 2: 10%

Mid-Year Evaluation: 10% Final Evaluation: 10%

Famous Physicist Report: 10% Science Fair Project: 10%

Example schedule:

FALL SEMESTER	SPRING SEMESTER
TOPIC 1: Weeks 1 - 3	TOPIC 6: Weeks 18 - 20
The Scientific Method	Simple Machines
Resultant Force and Net Force	Lever
Newton's 3 Laws of Motions	Wheel and Axle
Calculate Force	Inclined Plane
Group Lab: Investigating Newton's Three	Wedge and Screw
Laws.	Pulley and Gear
	Group Lab: Simple Machines
TOPIC 2: Weeks 4 - 6	TOPIC 7: Weeks 21 - 23
Friction	Energy Conversion
Gravity	Laws of Thermodynamics
Mass and Weight	Heat Transfer
Calculate Weight	Temperature
	Celsius to Fahrenheit

Individual Lab: How does friction affect	Calculate Specific Heat Capacity
movement?	Individual Lab: Do different types of foods
movement:	contain different amounts of energy?
FALL INDIVIDUAL PROJECT:	SPRING INDIVIDUAL PROJECT:
Famous Physicist Biography	Science Fair
1 amous 1 hysicist Biography	Science I an
TEST 1	TEST 2
TOPIC 3: Weeks 7 - 9	TOPIC 8: Weeks 24 - 27
Energy	Engines
Potential & Kinetic Energy	Calculating Power
Forms of Energy	Conductors and Insulators
Energy Sources	Batteries
Calculate Work	Magnetism
Group Lab: Building and testing a solar oven	Calculate Potential Difference
	Group Lab: Can organic materials conduct
	electricity?
TOPIC 4: Weeks 10 - 12	TOPIC 9: Weeks 28 - 30
Speed	Sound and Sound Waves
Velocity	Calculate Speed of Waves
Acceleration	Light and Vision
Speed-Time Graph	Reflection and Refraction
Calculate Speed.	Individual Lab: Make a tonoscope.
Individual Lab: Will the height of the ramp	
affect a car's speed?	
TOPIC 5: Weeks 13 - 16	<u>Weeks 31 - 33</u>
Pressure	Science Fair Presentation
Pascal's Law	Review for Final Evaluation
Calculate Pressure	
Group Lab: What affects the pressure exerted	
by a fluid?	
MID YEAR EVALUATION: Week 17	FINAL EVALUATION: Week 34

Well-Trained Mind Academy Diagnostic Test Physics for the Logic Stage

Instructions

This placement test can help you determine whether your student has the prerequisite math knowledge for success in Physics for the Logic Stage.

The student should work independently without the use of a calculator. If special accommodations are required, the instructor should be notified. It is not necessary to time the test.

Please write neatly. Illegible answers will be assumed to be in incorrect.

The student is most likely ready for PFLS if he/she scores a minimum of 70% on this placement test.

If the student's score falls below this level, it is advisable to contact the Dean at info@wtmacademy.com before registering for PFLS.

Test

Multiply or divide.

(3)
$$68,730 \div 5 = ?$$

(4)
$$44.45 \div 3.5 = ?$$

(5) Reduce to lowest term
$$\frac{369}{1203} = ?$$

$$(6) 9.687 + 1.943 + 0.76 + 24.2 = ?$$

(9) Round 47.948 to the **nearest whole number**.

$$(10) 20,000 + 3,400,000 = ?$$

Write your answer to this question in scientific notation.

Answer Key

- (1) 138,040
- (2) 280.25
- (3) 13,746
- *(4)* 12.7
- *(5)* 123/401
- (6) 36.59
- (7) 350 cm
- (8) 38
- (9) 48
- (10) 3.42×10^6